
Problem T1. Focus on sketches (13 points)
Part A. Ballistics (4.5 points)

i. (0.8 pts) When the stone is thrown vertically upwards, it

can reach the point x = 0, z = v2
0/2g (as it follows from the

energy conservation law). Comparing this with the inequality

z ≤ z0 − kx2 we conclude that

z0 = v2
0/2g. [0.3 pts]

Let us consider the asymptotics z → −∞; the trajectory of

the stone is a parabola, and at this limit, the horizontal dis-

placement (for the given z) is very sensitive with respect to the

curvature of the parabola: the flatter the parabola, the larger

the displacement. The parabola has the flattest shape when

the stone is thrown horizontally, x = v0t and z = −gt2/2, i.e.

its trajectory is given by z = −gx2/2v2
0. Now, let us recall

that z ≤ z0 − kx2, i.e. −gx2/2v2
0 ≤ z0 − kx2 ⇒ k ≤ g/2v2

0.

Note that k < g/2v2
0 would imply that there is a gap between

the parabolic region z ≤ z0 − kx2 and the given trajectory

z = −gx2/2v2
0 . This trajectory is supposed to be optimal for

hitting targets far below (z → −∞), so there should be no such

a gap, and hence, we can exclude the option k < g/2v2
0. This

leaves us with

k = g/2v2
0. [0.5 pts]

ii. (1.2 pts) Let us note that the

stone trajectory is reversible and due

to the energy conservation law, one

can equivalently ask, what is the min-

imal initial speed needed for a stone

to be thrown from the topmost point

of the spherical building down to the

ground without hitting the roof, and what is the respective tra-

jectory. It is easy to understand that the trajectory either needs

to touch the roof, or start horizontally from the topmost point

with the curvature radius equal to R. Indeed, if neither were

the case, it would be possible to keep the same throwing angle

and just reduce the speed a little bit — the stone would still

reach the ground without hitting the roof. Further, if it were

tangent at the topmost point, the trajectory wouldn’t touch

nor intersect the roof anywhere else, because the curvature of

the parabola has maximum at its topmost point. Then, it

would be possible to keep the initial speed constant, and in-

crease slightly the throwing angle (from horizontal to slightly

upwards): the new trajectory wouldn’t be neither tangent at

the top nor touch the roof at any other point; now we can re-

duce the initial speed as we argued previously. So we conclude

that the optimal trajectory needs to touch the roof somewhere,

as shown in Fig.

iii. (2.5 pts) The brute force approach would be writing down

the condition that the optimal trajectory intersects with the

building at two points and touches at one. This would be de-

scribed by a fourth order algebraic equation and therefore, it is

not realistic to accomplish such a solution within a reasonable

time frame.

Note that the interior of the building needs to lie inside the

region where the targets can be hit with a stone thrown from

the top with initial speed vmin. Indeed, if we can throw over

the building, we can hit anything inside by lowering the throw-

ing angle. On the other hand, the boundary of the targetable

region needs to touch the building. Indeed, if there were a

gap, it would be possible to hit a target just above the point

where the optimal trajectory touches the building; the traject-

ory through that target wouldn’t touch the building anywhere,

hence we arrive at a contradiction.

So, with v0 corresponding to the optimal trajectory, the tar-

getable region touches the building; due to symmetry, overall

there are two touching points (for smaller speeds, there would

be four, and for larger speeds, there would be none). With the

origin at the top of the building, the intersection points are

defined by the following system of equations:

x2 + z2 + 2zR = 0, z =
v2

0

2g
− gx2

2v2
0

.

Upon eliminating z, this becomes a biquadratic equation for x:

x4

(

g

2v2
0

)2

+ x2

(

1

2
− gR

v2
0

)

+

(

v2
0

4g
+ R

)

v2
0

g
= 0.

Hence the speed by which the real-valued solutions disappear

can be found from the condition that the discriminant vanishes:
(

1

2
− gR

v2
0

)2

=
1

4
+

gR

v2
0

=⇒ gR

v2
0

= 2.

Bearing in mind that due to the energy conservation law, at

the ground level the squared speed is increased by 4gR. Thus

we finally obtain

vmin =
√

v2
0 + 4gR = 3

√

gR

2
.

Alternative solution using the fact that if a ball is thrown

from a point A to a point B (possibly at different heights)

with the minimal required launching speed, the initial and

terminal velocities are equal. This fact may be known to

some of the contestants, but it can be also easily derived. In-

deed, suppose that when starting with velocity ~v0 at point A,

the ball will hit after time τ the point B, and |~v0| is the min-

imal speed by which hitting is possible. Now, let us rotate the

vector ~v0 slightly by adding to it a perpendicular small vector

~u ⊥ ~v0 (|~u| ≪ |~v0|). With the launching velocity ~v1 = ~v0 + ~u,

the trajectory of the ball will still go almost through point B:

near the pont B, the displacement of the trajectory cannot

change linearly with |~u|. Indeed, a linear in |~u| displacement

would mean that with essentially the same speed |~v1| ≈ |~v0|, it

would be possible to throw over point B, which is in a contra-

diction with the optimality of the original trajectory. Hence,

the displacement vector ~r0(τ)−~r1(τ) needs to be parallel to the

trajectory, i.e. to the velocity ~vB of the ball at point B. Here,

~r0(t) [~r1(t)] is the radius vector of the ball as a function of time

when it was launched with velocity ~v0 [~v1]. In a free-falling sys-

tem of reference one can easily see that ~r0(t)−~r1(t) = (~v0−~v1)t.

So, (~v0 − ~v1)τ = ~uτ ‖ ~vB ⇒ ~u ‖ ~vB ⇒ ~v0 ⊥ ~vB.
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We start again throwing a ball from the point O at the top

of the building, and notice that for the optimal trajctory, at

the point P , where it touches the building, the velocity is per-

pendicular both to the radius vector QP (where Q denotes the

building’s centre), and to the launching velocity. Hence, QP

and the launching velocity are parallel. Let O be the origin,

and let us denote ∠OQP = α. Then the trajectory is given by

z = x cot α − gx2

2v2 sin2 α
.

Point P with coordinates x = R sin α and z = R(cos α − 1) be-

longs to this parabola, hence R = gR2

2v2 , from where we obtain

the previous result.

Part B. Mist (4 points)

i. (0.8 pts) In the plane’s reference frame, along the channel

between two streamlines the volume flux of air (volume flow

rate) is constant due to continuity. The volume flux is the

product of speed and channel’s cross-section area, which, due

to the two-dimensional geometry, is proportional to the channel

width and can be measured from the Fig. Due to the absence of

wind, the unperturbed air’s speed in the plane’s frame is just v0.

So, upon measuring the dimensions a = 10 mm and b = 13 mm

(see Fig), we can write v0a = ub and hence u = v0
a
b
. Since at

point P , the streamlines are horizontal where all the velocities

are parallel, the vector addition is reduced to the scalar addi-

tion: the air’s ground speed vP = v0 − u = v0(1 − a
b
) = 23 m/s.

ii. (1.2 pts) Although the dynamic pressure 1

2
ρv2 is relatively

small, it gives rise to some adiabatic expansion and compres-

sion. In expanding regions the temperature will drop and hence,

the pressure of saturated vapours will also drop. If the dew

point is reached, a stream of droplets will appear. This process

will start in a point where the adiabatic expansion is maximal,

i.e. where the hydrostatic pressure is minimal and consequently,

as it follows from the Bernoulli’s law p + 1

2
ρv2 = const, the dy-

namic pressure is maximal: in the place where the air speed in

wing’s frame is maximal and the streamline distance minimal.

Such a point Q is marked in Fig.

iii. (2 pts) First we need to calculate the dew point for the air

of given water content (since the relative pressure change will

be small, we can ignore the dependence of the dew point on

pressure). The water vapour pressure is pw = psar = 2.08 kPa.

The relative change of the pressure of the saturated vapour is

small, so we can linearize its temperature dependence:

psa − pw

Ta − T
=

psb − psa

Tb − Ta

=⇒ Ta − T = (Tb − Ta)
(1 − r)psa

psb − psa

;

numerically T ≈ 291.5 K. Further we need to relate the air

speed to the temperature. To this end we need to use the en-

ergy conservation law. A convenient ready-to-use form of it is

provided by the Bernoulli’s law. Applying this law will give

a good approximation of the reality, but strictly speaking, it

needs to be modified to take into account the compressibility

of air and the associated expansion/contraction work. Con-

sider one mole of air, which has the mass µ and the volume

V = RT/p. Apparently the process is fast and the air par-

cels are large, so that heat transfer across the air parcels is

negligible. Additionally, the process is subsonic; all together

we can conclude that the process is adiabatic. Consider a seg-

ment of a tube formed by the streamlines. Let us denote the

physical quantities at its one end by index 1, and at the other

end — by index 2. Then, while one mole of gas flows into

the tube at one end, as much flows out at the other end. The

inflow carries in kinetic energy 1

2
µv2

1 , and the outflow carries

out 1

2
µv2

2 . The inflowing gas receives work due to the pushing

gas equal to p1V1 = RT1, the outflowing gas performs work

p2V2 = RT2. Let’s define molar heat capacities CV = µcV and

Cp = µcp. The inflow carries in heat energy CV RT1, and the

outflow carries out CV RT2. All together, the energy balance

can be written as 1

2
µv2 + CpT = const. From this we can

easily express ∆ v2

2
= 1

C
v2

crit(
a2

c2 − 1) = cp∆T , where c is the

streamline distance at the point Q, and further

vcrit = c

√

2cp∆T

a2 − c2
≈ 23 m/s,

where we have used c ≈ 4.5 mm and ∆T = 1.5 K. Note that

in reality, the required speed is probably somewhat higher, be-

cause for a fast condensation, a considerable over-saturation is

needed. However, within an order of magnitude, this estimate

remains valid.

Part C. Magnetic straws (4.5 points)

i. (0.8 pts) Due to the superconduct-

ing walls, the magnetic field lines cannot

cross the walls, so the flux is constant

along the tube. For a closed contour in-

side the tube, there should be no circu-

lation of the magnetic field, hence the

field lines cannot be curved, and the field

needs to be homogeneous. The field lines

close from outside the tube, similarly to a solenoid.

ii. (1.2 pts) Let us consider the change of the magnetic energy

when the tube is stretched (virtually) by a small amount ∆l.

Note that the magnetic flux trough the tube is conserved: any

change of flux would imply a non-zero electromotive force dΦ

dt
,

and for a zero resistivity, an infinite current. So, the induc-

tion B = Φ

πr2 . The energy density of the magnetic field is B2

2µ0

.

Thus, the change of the magnetic energy is calculated as

∆W =
B2

2µ0

πr2∆l =
Φ2

2µ0πr2
∆l.

This energy increase is achieved owing to the work done by the
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stretching force, ∆W = T ∆l. Hence, the force

T =
Φ2

2µ0πr2
.

iii. (2.5 pts) Let us analyse, what would be the change of

the magnetic energy when one of the straws is displaced to a

small distance. The magnetic field inside the tubes will remain

constant due to the conservation of magnetic flux, but outside,

the magnetic field will be changed. The magnetic field out-

side the straws is defined by the following condition: there is

no circulation of ~B (because there are no currents outside the

straws); there are no sources of the field lines, other than the

endpoints of the straws; each of the endpoints of the straws is

a source of streamlines with a fixed magnetic flux ±Φ. These

are exactly the same condition as those which define the elec-

tric field of four charges ±Q. We know that if the distance

between charges is much larger than the geometrical size of

a charge, the charges can be considered as point charges (the

electric field near the charges remains almost constant, so that

the respective contribution to the change of the overall electric

field energy is negligible). Therefore we can conclude that the

endpoints of the straws can be considered as magnetic point

charges. In order to calculate the force between two magnetic

charges (magnetic monopoles), we need to establish the corres-

pondence between magnetic and electric quantities.

For two electric charges Q separated by a distance a, the

force is F = 1

4πε0

Q2

a2 , and at the position of one charge, the elec-

tric field of the other charge has energy density w = 1

32π2ε0

Q2

a4 ;

hence we can write F = 8πwa2. This is a universal expression

for the force (for the case when the field lines have the same

shape as in the case of two opposite and equal by modulus elec-

tric charges) relying only on the energy density, and not related

to the nature of the field; so we can apply it to the magnetic

field. Indeed, the force can be calculated as a derivative of

the full field energy with respect to a virtual displacement of

a field line source (electric or magnetic charge); if the energy

densities of two fields are respectively equal at one point, they

are equal everywhere, and so are equal the full field energies.

As it follows from the Gauss law, for a point source of a fixed

magnetic flux Φ at a distance a, the induction B = 1

4π
Φ

a2 . So,

the energy density w = B2

2µ0
= 1

32π2µ0

Φ
2

a4 , hence

F =
1

4πµ0

Φ2

a2
.

For the two straws, we have four magnetic charges. The lon-

gitudinal (along a straw axis) forces cancel out (the diagonally

positioned pairs of same-sign-charges push in opposite direc-

tions). The normal force is a superposition of the attraction

due to the two pairs of opposite charges, F1 = 1

4πµ0

Φ
2

l2 , and

the repulsive forces of diagonal pairs, F2 =
√

2

8πµ0

Φ
2

2l2 . The net

attractive force will be

F = 2(F1 − F2) =
4 −

√
2

8πµ0

Φ2

l2
.

Alternative solution based on dipole energy calculation.

It is known that the axial component of the magnetic induction

created by a solenoidal current of surface density j is propor-

tional to the solid angle Ω under which the current is seen from

the given point:

B‖ = µ0jΩ/4π;

this can be easily derived from the Biot-Savart law. Let the

distance between the tubes be a (we’ll take derivative over a),

and let us consider a first tube’s point which has a coordinate

x (with 0 ≤ x ≤ l) from where the direction to the one end-

point of the other tube forms an angle α = arctan a/x with

the tube’s axis. From that point, the open circular face of the

other tube forms a solid angle Ω = πr2 sin2 α cos α/a2, so that

its contribution to the axial magnetic field at the point x

B‖ =
µ0jr2 sin2 α cos α

4a2
=

Φ sin2 α cos α

4πa2
.

The solenoidal current at that point forms a magnetic dipole

dm = πr2jdx = Φdx/µ0,

which has potential energy

dU = B‖dm = sin2 α cos αΦ2dx/4πµ0a2.

When integrating over x, α varies from arctan a/l to 0, so that

U1 =

∫

dU =

∫

sin2 α cos αΦ2dx

4πµ0a2
=

∫

cos αΦ2dα

4πµ0a
.

Bearing in mind that the other end-circle of the other tube con-

tributes the same amount to the magnetic interaction energy,

we find

U = 2U1 =
Φ2

2πµ0

(

1

a
− 1√

a2 + l2

)

.

Upon taking derivative over a and using a = l we obtain the

same result for F as previously.
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Problem T2. Kelvin water dropper (8 points)
Part A. Single pipe (4 points)

i. (1.2 pts) Let us write the force balance for the droplet.

Since d ≪ r, we can neglect the force π
4

∆pd2 due to the excess

pressure ∆p inside the tube. So, the gravity force 4

3
πr3

maxρg

is balanced by the capillary force. When the droplet separates

from the tube, the water surface forms in the vicinity of the

nozzle a “neck”, which has vertical tangent. In the horizontal

cross-section of that “neck”, the capillary force is vertical and

can be calculated as πσd. So,

rmax = 3

√

3σd

4ρg
.

ii. (1.2 pts) Since d ≪ r, we can neglect the change of the

droplet’s capacitance due to the tube. On the one hand, the

droplet’s potential is ϕ; on the other hand, it is 1

4πε0

Q
r

. So,

Q = 4πε0ϕr.

iii. (1.6 pts) Excess pressure inside the droplet is caused by

the capillary pressure 2σ/r (increases the inside pressure), and

by the electrostatic pressure 1

2
ε0E2 = 1

2
ε0ϕ2/r2 (decreases the

pressure). So, the sign of the excess pressure will change, if
1

2
ε0ϕ2

max/r2 = 2σ/r, hence

ϕmax = 2
√

σr/ε0.

The expression for the electrostatic pressure used above can

be derived as follows. The electrostatic force acting on a surface

charge of density σ and surface area S is given by F = σS · Ē,

where Ē is the field at the site without the field created by the

surface charge element itself. Note that this force is perpen-

dicular to the surface, so F/S can be interpreted as a pressure.

The surface charge gives rise to a field drop on the surface equal

to ∆E = σ/ε0 (which follows from the Gauss law); inside the

droplet, there is no field due to the conductivity of the droplet:

Ē − 1

2
∆E = 0; outside the droplet, there is field E = Ē + 1

2
∆E,

therefore Ē = 1

2
E = 1

2
∆E. Bringing everything together, we

obtain the expression used above.

Note that alternatively, this expression can be derived by

considering a virtual displacement of a capacitor’s surface and

comparing the pressure work p∆V with the change of the elec-

trostatic field energy 1

2
ε0E2∆V .

Finally, the answer to the question can be also derived from

the requirement that the mechanical work dA done for an in-

finitesimal droplet inflation needs to be zero. From the en-

ergy conservation law, dW + dW
el

= σ d(4πr2) + 1

2
ϕ2

max dCd,

where the droplet’s capacitance Cd = 4πε0r; the electrical work

dW
el

= ϕmaxdq = 4πε0ϕ2
maxdr. Putting dW = 0 we obtain an

equation for ϕmax, which recovers the earlier result.

Part B. Two pipes (4 points)

i. (1.2 pts) This is basically the same as Part A-ii, except

that the surroundings’ potential is that of the surrounding

electrode, −U/2 (where U = q/C is the capacitor’s voltage)

and droplet has the ground potential (0). As it is not defined

which electrode is the positive one, opposite sign of the po-

tential may be chosen, if done consistently. Note that since

the cylindrical electrode is long, it shields effectively the en-

vironment’s (ground, wall, etc) potential. So, relative to its

surroundings, the droplet’s potential is U/2. Using the result

of Part A we obtain

Q = 2πε0Urmax = 2πε0qrmax/C.

ii. (1.5 pts) The sign of the droplet’s charge is the same as

that of the capacitor’s opposite plate (which is connected to

the farther electrode). So, when the droplet falls into the bowl,

it will increase the capacitor’s charge by Q:

dq = 2πε0UrmaxdN = 2πε0rmaxndt
q

C
,

where dN = ndt is the number of droplets which fall during

the time dt This is a simple linear differential equation which

is solved easily to obtain

q = q0eγt, γ =
2πε0rmaxn

C
=

πε0n

C
3

√

6σd

ρg
.

iii. (1.3 pts) The droplets can reach the bowls if their mech-

anical energy mgH (where m is the droplet’s mass) is large

enough to overcome the electrostatic push: The droplet starts

at the point where the electric potential is 0, which is the sum of

the potential U/2, due to the electrode, and of its self-generated

potential −U/2. Its motion is not affected by the self-generated

field, so it needs to fall from the potential U/2 down to the po-

tential −U/2, resulting in the change of the electrostatic energy

equal to UQ ≤ mgH , where Q = 2πε0Urmax (see above). So,

Umax =
mgH

2πε0Umaxrmax

,

∴ Umax =

√

Hσd

2ε0rmax

= 6

√

H3gσ2ρd2

6ε3
0

.
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Problem T3. Protostar formation (9 points)
i. (0.8 pts)

T = const =⇒ pV = const

V ∝ r3

∴ p ∝ r−3 =⇒ p(r1)

p(r0)
= 23 = 8.

ii. (1 pt) During the period considered the pressure is negli-

gible. Therefore the gas is in free fall. By Gauss’ theorem and

symmetry, the gravitational field at any point in the ball is

equivalent to the one generated when all the mass closer to the

center is compressed into the center. Moreover, while the ball

has not yet shrunk much, the field strength on its surface does

not change much either. The acceleration of the outermost

layer stays approximately constant. Thus,

t ≈
√

2(r0 − r2)

g

where

g ≈ Gm

r2
0

,

∴ t ≈
√

2r2
0(r0 − r2)

Gm
=

√

0.1r3
0

Gm
.

iii. (2.5 pts) Gravitationally the outer layer of the ball is in-

fluenced by the rest just as the rest were compressed into a

point mass. Therefore we have Keplerian motion: the fall of

any part of the outer layer consists in a halfperiod of an ultra-

elliptical orbit. The ellipse is degenerate into a line; its foci are

at the ends of the line; one focus is at the center of the ball (by

Kepler’s 1st law) and the other one is at r0, see figure (instead

of a degenerate ellipse, a strongly elliptical ellipse is depicted).

The period of the orbit is determined by the longer semiaxis of

the ellipse (by Kepler’s 3rd law). The longer semiaxis is r0/2

and we are interested in half a period. Thus, the answer is

equal to the halfperiod of a circular orbit of radius r0/2:

(

2π

2tr→0

)2
r0

2
=

Gm

(r0/2)2
=⇒ tr→0 = π

√

r3
0

8Gm
.

Alternatively, one may write the energy conservation law
ṙ2

2
− Gm

r
= E (that in turn is obtainable from Newton’s

II law r̈ = − Gm
r2 ) with E = − Gm

r0

, separate the variables

(dr
dt

= −
√

2E + 2Gm
r

) and write the integral t = −
∫

dr√
2E+ 2Gm

r

.

This integral is probably not calculable during the limitted

time given during the Olympiad, but a possible approach can

be sketched as follows. Substituting
√

2E + 2Gm
r

= ξ and
√

2E = υ, one gets

t∞
4Gm

=

∫ ∞

0

dξ

(υ2 − ξ2)
2

=
1

4υ3

∫ ∞

0

[

υ

(υ − ξ)2
+

υ

(υ + ξ)2
+

1

υ − ξ
+

1

υ + ξ

]

dξ.

Here (after shifting the variable) one can use
∫

dξ
ξ

= ln ξ and
∫

dξ
ξ2 = − 1

ξ
, finally getting the same answer as by Kepler’s laws.

iv. (1.7 pts) By Clapeyron–Mendeleyev law,

p =
mRT0

µV
.

Work done by gravity to compress the ball is

W = −
∫

p dV = −mRT0

µ

∫ 4

3
πr3

3

4

3
πr3

0

dV

V
=

3mRT0

µ
ln

r0

r3

.

The temperature stays constant, so the internal energy does not

change; hence, according to the 1st law of thermodynamics, the

compression work W is the heat radiated.

v. (1 pt) The collapse continues adiabatically.

pV γ = const =⇒ T V γ−1 = const.

∴ T ∝ V 1−γ ∝ r3−3γ

∴ T = T0

(r3

r

)3γ−3

.

vi. (2 pts) During the collapse, the gravitational energy is con-

verted into heat. Since r3 ≫ r4, The released gravitational en-

ergy can be estimated as ∆Π = −Gm2(r−1
4 −r−1

3 ) ≈ −Gm2/r4

(exact calculation by integration adds a prefactor 3

5
); the ter-

minal heat energy is estimated as ∆Q = cV
m
µ

(T4 − T0) ≈
cV

m
µ

T4 (the approximation T4 ≫ T0 follows from the result

of the previous question, when combined with r3 ≫ r4). So,

∆Q = R
γ−1

m
µ

T4 ≈ m
µ

RT4. For the temperature T4, we can use

the result of the previous question, T4 = T0

(

r3

r4

)3γ−3

. Since

initial full energy was approximately zero, ∆Q + ∆Π ≈ 0, we

obtain

Gm2

r4

≈ m

µ
RT0

(

r3

r4

)3γ−3

=⇒ r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

.

Therefore,

T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ

.

Alternatively, one can obtain the result by approximately

equating the hydrostatic pressure ρr4
Gm
r2

4

to the gas pressure

p4 = ρ
µ

RT4; the result will be exactly the same as given above.
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The 43rd International Physics Olympiad — July 2012

Grading scheme: Theory

General rules This grading scheme describes the number of

points allotted for each term entering a useful formula. These

terms don’t need to be separately described: if a formula is

written correctly, full marks (the sum of the marks of all the

terms of that formula) are given. If a formula is not written

explicitly, but it is clear that individual terms are written bear-

ing the equation in mind (eg. indicated on a diagram), marks

for these terms will be given. Some points are allotted for

mathematical calculations.

If a certain term of a useful formula is written incor-

rectly, 0.1 is subtracted for a minor mistake (eg. missing non-

dimensional factor); no mark is given if the mistake is major

(with non-matching dimensionality). The same rule is applied

to the marking of mathematical calculations: each minor mis-

take leads to a subtraction of 0.1 pts (as long as the remaining

score for that particular calculation remains positive), and no

marks are given in the case of dimensional mistakes.

No penalty is applied in these cases when a mistake is clearly

just a rewriting typo (i.e. when there is no mistake in the draft).

If formula is written without deriving: if it is simple

enough to be derived in head, full marks, otherwise zero

marks.

If there two solutions on Solution sheets, one correct and

another incorrect: only the one wich corresponds to the An-

swer Sheets is taken into account. What is crossed out is

never considered.

No penalty is applied for propagating errors unless the cal-

culations are significantly simplified (in which case mathemat-

ical calculations are credited partially, according to the degree

of simplification, with marking granularity of 0.1 pts).
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Problem T1. Focus on sketches (13 points)
Part A. Ballistics (4.5 points)

i. (0.8 pts) If the parameters are derived using the particular

cases of throwing up and throwing horizontally:

for throwing up, zg = v2
0/2 — 0.2 pts;

from where z0 = v2
0/2g — 0.1 pts;

noticing that for horizontally thrown ball,

the trajectory has the same shape as z = −kx2 — 0.2 pts;

finding this trajectory, z = −gx2/2v2
0 — 0.2 pts;

Concluding k = g/2v2
0 — 0.1 pts;

If, instead of studying the trajectory of a horizontally

thrown ball (for which 0.5 pts were allocated), a trajectory

of a ball thrown at 45 degrees is studied:

distance is max. when the angle is 45◦ — 0.2

Finding this maximal distance v2/g — 0.2

Obtaining k — 0.1

If the parameters are derived using condition that the quad-

ratic equation for the tangent of the throwing angle has exactly

one real solution:

Requiring x = v cos αt — 0.1 pts;

Requiring z = v sin αt − gt2/2 — 0.2 pts;

Eliminating t: z = x tan α − gx2/v2 cos2 α — 0.1 pts;

Obtaining z − x tan α + gx2/v2(1 + tan2 α) = 0 — 0.1 pts;

Requiring that the discriminant is 0 — 0.2 pts;

Obtaining z0 = v2
0/2g, k = gx2/2v2

0 — 0.1 pts;

(If one of the two is incorrect — 0 pts for the last line)

ii. (1.2 pts)

Trajectory hits the sphere when descending — 0.7 pts
(if the top of the parabola is higher than 5

2
R — 0.5 pts);

Trajectory touches the sphere when ascending — 0.5 pts.

Trajectory touches the sphere at its top or
is clearly non-parabolic or starts inside the sphere

or intersects the sphere: total — 0 pts.

iii. (2.5 pts) If the analysis is based on a trajectory which is

wrong in principle, 0 pts.

For minimal speed, z = z0 − kx2 touches the sphere — 1.5 pts

Shifting the origin to the sphere’s top for simplicity — 0.1 pts

Then z =
v2

0

2g
− gx2

2v2
0

— 0.2 pts

and x2 + z2 + 2zR = 0 — 0.2 pts

⇒ x4

(

g

2v2

0

)2

+ x2

(

1

2
− gR

v2

0

)

+
(

v2

0

4g
+ R

)

v2

0

g
= 0 — 0.1 pts

(full 0.6 pts if equivalent eq. is obtained for non-shifted origin)

Discriminant equals 0 — 0.2 pts

from where v2
0 = 0.5gR — 0.1 pts

hence vmin =
√

4.5gR — 0.1 pts

If alternative solution is followed:

Shifting the origin to the sphere’s top for simplicity — 0.1 pts

Noting that the touching point vel. is ⊥ to launching vel.— 0.6 pts

Angle from centre to touching pt P = launching angle — 0.6 pts

Cond. that P belongs to the trajectory — 0.6 pts

From this cond., final answer obtained — 0.6 pts

For a brute force approach:

Obtaining 4th order equation
for intersection points x (or y) — 0.5 pts

which is reduced to cubic(divided by x) — 0.1 pts

Mentioning that it has exactly one pos. root — 0.2 pts
(equivalently, an extrememum coincides with a root or there

are exactly two distinct real roots.)

Obtaining quadratic eq. for x-coord. of extrema — 0.2 pts

Finding the roots of it — 0.2 pts

Selecting the larger root x∗ of it — 0.2 pts

Requiring that x∗ is the root of the cubic eq — 0.2 pts

Obtaining the speed as a function of α — 0.2 pts

Finding the minimum of that function — 0.7 pts

Part B. Air flow around a wing (4 points)

i. (0.8 pts)

Using the wing’s frame of reference — 0.1 pts

taking streamline distance measurment at P — 0.2 pts
(if off by 1 mm or more, 0.1 pts)

measuring unperturbed streamline distance — 0.1 pts
(if off by 1 mm or more, 0 pts)

at P , streamlines are horiz. ⇒ scalar adding — 0.1 pts

Writing continuity condition — 0.2 pts

Finding final answer — 0.1 pts

(if the speed in wing’s frame is given as final anser, points

are lost for 4th and 6th line)

ii. (1.2 pts)

Writing down continuity condition — 0.2 pts
(or stating: smaller streamline distance ⇒ larger speed)

Writing Bernoulli’s law — 0.4 pts
0 pts out of 0.4 if the Bernoulli law includes ρgh

(or stating that larger speed ⇒ smaller pressure)

Writing adiabatic law — 0.4 pts
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(or stating that smaller pressure ⇒ lower temperature)

Finding Q as in the figure in the solutions — 0.2 pts
(if Q marked below the wing’s tip — 0.1 pts)

iii. (2 pts)

Finding the dew point: idea of linearization — 0.2 pts

Expression and/or numerical value for dew point — 0.2 pts

Deriving 1

2
µv2 + cpT = const:

1 mole of gas carries kin. en. 1

2
µv2 — 0.2 pts

1 mole of gas carries heat en. CV T — 0.2 pts

work done on 1 mole of gas: p1V1 − p2V2 — 0.4 pts

en.: 1

2
µ(v2

2 − v2
1) + CV (T2 − T1) = p1V1 − p2V2 — 0.2 pts

using ideal gas law obtaining 1

2
v2 + cpT = const — 0.2 pts

Alternative approximate approach:

Bernoulli’s law 1

2
ρv2 + p = const — 0.3 pts

0 pts out of 0.3 if the Bernoulli law includes ρgh

Adiabatic law pV γ = const — 0.3 pts

⇒ p1−γT γ = const — 0.2 pts

Approximation ∆p = γ
γ−1

p
T

∆T — 0.2 pts

Leading to 1

2
v2 + R

µ

cp

cp−cV
T = const — 0.1 pts

Leading to 1

2
v2 + cpT = const — 0.1 pts

And further (for either approach):

Bringing it to ∆v2

2
= 1

2
v2

crit(
a2

c2 − 1) = cp∆T — 0.1 pts

Measuring a and c — 0.2 pts

Obtaining vcrit = c

√

2cp∆T

a2 − c2
≈ 23 m/s — 0.1 pts

Part C. Magnetic straws (4.5 points)

i. (0.8 pts)

Lines straight and parallel inside — 0.6 pts

(if not drawn over the entire length, subtract 0.2)

(can be slightly curved close the tube’s end)

Lines curve outwards slightly after the exit — 0.2 pts

(if so curved that more than one closed loop on both sides is

depicted in Fig, 0 pts out of 0.2)

ii. (1.2 pts)

Expressing induction as B = Φ/πr2 — 0.2 pts

Stating that w = B2

2µ0
— 0.2 pts

Idea of using virtual lengthening — 0.2 pts

(Introducing a lengthening ∆l is enough)

Expressing ∆W = B2

2µ0

πr2∆l — 0.2 pts

(Same marks if W expressed for entire tube)

Equating ∆W = T ∆l — 0.2 pts

Expressing T = Φ
2

2µ0πr2 . — 0.2 pts

iii. (2.5 pts)

Idea of using analogy with el. charges — 1 pt

(Sketch with a quadrupole conf. of el. charges is enough)

Finding the force between two magn. charges via matching el.

and magn. quantities is worth 1 pts in total, split down as

follows:

Expressing el. stat. force via en. density — 0.5 pts

Using the obtained Eq. to obtain F = 1

4πµ0

Φ
2

a2 — 0.5 pts

Any other matching scheme is graded analogously; e.g. find-

ing such a Q which has the same en. density as Φ — 0.5 pts;

expressing the force between magn. charges (Φ) as the force

between the matching el. charges (Q) — 0.5 pts. Declaring

matching pairs Q ↔ Φ and 1

4πε0
↔ 1

4πµ0
without energy-based-

motivation gives only 0.5 pts.

Noting that ‖ to tubes comp. of force = 0 — 0.2 pts

When expressing F = 2(F1 − F2): for factor “2” — 0.1 pts

and for finding F2 — 0.2 pts

(if wrong sign for F2, subtract 0.1)

If alternative solution is followed

Plan to express inter. energy as a function of a

intending to find F as a derivative — 0.2 pts

Calculating B‖(x) — 0.8 pts

If estimated without dependance on x, 0.4

considering a tube as an array of dipoles — 0.3 pts

expressing dm = Sjdx — 0.3 pts

relating j to Φ — 0.2 pts

Expressing U =
∫

B(x)dm — 0.4 pts

If estimated as BSjl, 0.2

Finding F = dU/da — 0.2 pts

Taking into account the factor “ 2”— 0.1 pts
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Problem T2. Kelvin water dropper (8 points)
Part A. Single pipe (4 points)

i. (1.2 pts) For the terms entering the force balance of a

droplet immediately before separation from the nozzle, the

points are given as follows:

mg — 0.2 pts;

m = ρV — 0.1 pts;

V =
4

3
πr3

max — 0.1 pts;

πσd — 0.4 pts.

(if geometrically obtained cos α is included, 0.2 pts)

Force balance equation including these terms — 0.2 pts;

For expressing rmax from the equation — 0.2 pts.

ii. (1.2 pts)

Stating that the droplet’s potential is ϕ — 0.2 pts

(if used correctly, this does not need to be explicitly stated).

Expressing the droplet’s potential as
1

4πε0

Q

r
— 0.8 pts

(without correct sign — 0.6 pts).

Expressing Q from the obtained equation — 0.2 pts.

iii. (1.6 pts) The components of the excess pressure are graded

as follows.

2σ/r — 0.5 pts;

1

2
ε0E2 — 0.4 pts;

bringing it to the form
1

2
ε0ϕ2/r2 — 0.2 pts.

Noticing that the two effects have opposite sign — 0.2 pts

(if used correctly, this does not need to be stated separately).

Equation stating that the excess pressure is 0 — 0.1 pts;

Expressing ϕmax from the obtained equation — 0.2 pts.

In the case of energy-balance-based solution, the distribu-

tion of marks is as follows.

surface energy change as 4πσd(r2) = 8πσrdr — 0.5 pts;

electrostatic energy change as 2πε0ϕ2
maxdr — 0.5 pts;

electrostatic work as dA
el

= 4πε0ϕ2
maxdr — 0.3 pts;

equation stating that en. change equals to work — 0.1 pts;

expressing ϕmax from the obtained equation — 0.2 pts.

0 pts if energy are equated (without virtual displacement).

If factor 1

2
missing before the electrostat. force (but other-

wise correct), -0.2 pts).

Part B. Two pipes (4 points)

i. (1.2 pts)

Stating that the surroundings’ potential is − U/2 — 0.4 pts;

(if not stated but used correctly — full marks; opposite signs

are allowed to be chosen consistently)

stating that the droplet’s potential is 0 — 0.4 pts

(if not stated but used correctly — full marks)

Applying formula U = q/C — 0.2 pts

Using the result of Part A with

ϕ = U/2 to obtain the final result — 0.2 pts.

the solutions with U instead of U/2 will qualify for 0.4 pts

for the first two lines (i.e. in total up to 0.8)

ii. (1.5 pts)

Stating that a droplet will increase the capacitor’s

charge by its own charge Q = 2πε0qrmax/C — 0.4 pts;

(0 pts if wrong sign)

(0.2 pts if redundant factor “2”)

Expressing dq = Q dN — 0.2 pts;

Substituting dN = n dt — 0.2 pts;

solving the obtained differential equation — 0.5 pts;

determining the integration constant from

the initial condition — 0.1 pts;

substituting rmax from above — 0.1 pts.

iii. (1.3 pts) Equation for the energy balance of a droplet:

expressing the droplet’s electrostatic energy change during

the fall as UQ — 0.6 pts

(0.3 for UQ/2)

expressing the droplet’s gravitational energy change as mgH

— 0.2 pts

noticing that at the limit voltage, droplet’s terminal kinetic

energy is zero — 0.3 pts

expressing energy conservation law equation — 0.1 pts

expressing the final answer — 0.1 pts.

(if bowl considered as a point charge, only the mgh line

and the kin. en. lines are applicable)

If instead of the energy balance, the force balance is used

(which is incorrect), partial credit for the terms entering the

equation is given as follows.

gravity force gm — 0.2 pts

electric field estimated as E ≈ U/(H − L/2) — 0.2 pts

(0.1, if not realized that this is an approximation)

electric force F = EQ — 0.1 pts

writing down force balance equation — 0.1 pts.

expressing the final answer — 0.1 pts.

(if bowl considered as a point charge, only the first line and

the force balance line are applicable)
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Problem T3. Protostar formation (9 points)
i. (0.8 pts)

In thermodynamic equilibrium T = const — 0.2 pts.
(if not stated but used correctly — full marks)

pV = const — 0.3 pts.

V ∝ r3 — 0.1 pts.

p ∝ r−3 — 0.1 pts.

p(r1)

p(r0)
= 8 — 0.1 pts.

ii. (1 pt)

t ≈
√

2(r0 − r2)

g
— 0.4 pts.

g ≈ Gm

r2
0

— 0.4 pts.

t ≈
√

0.1r3
0

Gm
— 0.2 pts.

iii. (2.5 pts)

First solution:

Understanding that we have effectively
interaction of two point masses — 0.5 pts.

(equivalently one may mention the ∝ r−2 force coming from

Gauss’ law; if not stated, but used correctly — full marks)

Idea of the motion as an ultraelliptical orbit — 1 pt.

Period of the elliptical orbit is equal to the period
of the circular orbit of the same longer semiaxis — 0.4 pts.

(if not stated but used correctly — full marks)

The longer semiaxis is r0/2 — 0.1 pts.

Equation(s) for the period — 0.3 pts.

We need half a period — 0.1 pts.

Final answer tr→0 = π

√

r3
0

8Gm
— 0.1 pts.

Alternative solution:

Understanding that we have effectively
interaction of two point masses — 0.5 pts.

(equivalently one may mention the ∝ r−2 force coming from

Gauss’ law; if not stated, but used correctly — full marks)

Energy conservation as a differential equation — 0.3 pts.

(if only expressed through v (like mv2

2
− GMm

r
= E) — 0.1 pts.;

if the differential equation of Newton’s 2nd law (r̈ = − Gm
r2 ) is

given instead — 0.2 pts.)

t =

∫

dr
√

2E + 2Gm
r

(whichever the sign is) — 0.4 pts.

Integration and final answer — 1.3 pts.

iv. (1.7 pts)

Radiated heat equals the compression work — 1 pt.

[for mentioning or using the 1st law of thermodynamics (pos-

sibly in a wrong way) — 0.5 pts.]

W = −
∫

p dV or W = −
∑

p ∆V — 0.3 pts.

(with either “+” or “−” — give full marks)

p =
mRT0

µV
— 0.2 pts.

Calculating the integral, W =
3mRT0

µ
ln

r0

r3

— 0.2 pts.

v. (1 pt)

The collapse continues adiabatically.
(If used, but not written down, give full marks.) — 0.3 pts.

pV γ = const — 0.3 pts.

T ∝ V 1−γ — 0.2 pts.

T = T0

(r3

r

)3γ−3

— 0.2 pts.

vi. (2 pts)

In case of using energies (marks must not be subtracted for

fewer approximations, even in the final answer):

T4 = T0

(

r3

r4

)3γ−3

— 0.1 pts.

∆Q + ∆Π ≈ 0 — 0.4 pts.

∆Π ≈ −Gm2/r4 — 0.6 pts.

∆Q = mcV T4 — 0.4 pts.

cV ≈ R

µ
— 0.3 pts.

Final answer r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

— 0.1 pts.

Final answer T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ

— 0.1 pts.

In case of using pressures (again, fewer approximations are per-

mitted):

T4 = T0

(

r3

r4

)3γ−3

— 0.1 pts.

p4 = phydrostatic — 0.4 pts.

p4 =
ρ

µ
RT4 — 0.5 pts.

phydrostatic ≈ ρgr4 — 0.4 pts.

g ≈ Gm

r2
4

— 0.4 pts.

Final answer r4 ≈ r3

(

RT0r3

µmG

)
1

3γ−4

— 0.1 pts.

Final answer T4 ≈ T0

(

RT0r3

µmG

)

3γ−3

4−3γ

— 0.1 pts.
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